E-mail: sales@jsbellows.com
Tel: +86-17321605009  
Bellows Design
You are here: Home » News » Industry News » Bellows Design

Contact Us

Add: City East Development Zone,Jiangyan Area,Taizhou City, Jiangsu Province, China
Mobile: 86-17321605009
Tel: 86-523-88588220
Fax: 86-523-88588220
Skype: luckylin5858
WhatsApp: 8617321605009 
Wechat: 17321605009
Email: sales@jsbellows.com

Bellows Design

Views: 10     Author: Site Editor     Publish Time: 2017-05-10      Origin: Site

Bellows Design

The bellows is the flexible element of expansion joint.It must be strong enough circumferentially to withstand the pressure and flexible enough longitudinally to accept the deflections for which it was designed , and as repetitively as necessary with a minimum resistance. This strength with flexibility is a unique design problem that is not often found in other components in industrial equipment.

Most engineered structures are designed to inhibit deflection when acted upon by outside forces. Since the bellows must accept deflections repetitively,and deflections result in stresses, these stresses must be kept as low as possible so that the repeated deflections will not result in premature fatigue failures. Reducing bending stress resulting from a given deflection is easily achieved by simply reducing the thickness of the bending member,which in the case of the bellows, is the convolutions. However,in order to withstand the pressure,the convolution, which is also a pressure vessel,must have a thickness great enough that the pressure induced membrane stress are equal to or less than the allowable stress levels of the materials at the design tempretures. This conflicting need for thickness for pressure and thinness for flexibility is the unique design problem faced by the expansion joint designer.

 Bellows are not springs, in that most of their deflections produce bending stresses in excess of the materials’ yield strength. Understanding how various materials perform and their capabilities in this “plastic” deformation region requires years of experience and design equations based upon this empirical understanding.

 That bellows routinely operate “plastically” should not be a cause for concern,since most of the materials from which bellows are made share similar highly ductile characteristics. In particular, then endurance limit of these materials , which can be loosely described as the stress at which failure will occur at ten million cycles of repeated stressing, is nearly the same as their yield stress, or the point at which permanent deformation will occur. A bellows which is required to withstand 3000 cycles of a given deflection and pressure,and which ultimately fails after 10,000 cycles, has certainly demonstrated more than acceptable performance. However, it has experienced , during each and every cycle, bending stresses far in excess of the endurance limit and therefore the yield stress, and once deflected, would not have returned on their own to their original undeflcted length or shape, as a spring is expected to do. In other words, they would have “taken a set”.

Most bellows fail by circumferential cracking resulting from cyclic bending stresses, or fatigue. Since the best design is a compromise, or balance, between pressure strength and flexibility considerations, it can be concluded that their designs have had regarding pressure strength. The years of experience of the engineers who developed these bellows assures that the designs contained in this catalog and those offered to satisfy customer specifications, will have the performance reliability which yields trouble free, safe use.  


Taizhou Fustar Trade Co,.Ltd

Add: City East Development Zone,Jiangyan Area,Taizhou City, Jiangsu Province, China
Mobile(WhatsApp): 86-17321605009
Tel: 86-523-88588220
Fax: 86-523-88588220
Email: sales@jsbellows.com
Copyright © 2016 Taizhou Fustar Trade Co,.Ltd  All rights reserved.